геология и разведка
Preview

Proceedings of higher educational establishments. Geology and Exploration

Advanced search

Application of a modified fou rier transformation for modeling variations in the gravity field

https://doi.org/10.32454/0016-7762-2025-67-4-87-101

Abstract

Introduction. The analysis and processing of signals with complex structures — particularly those exhibiting frequency and phase modulation — remains a relevant challenge, especially in cases where traditional methods fail to provide sufficient accuracy. This study considers a modified Fourier transformation suitable for processing signals with modulated frequency and phase, referred to in the article as frequency-phase modulated (FPM) signals.

Objective. To develop and apply a modified Fourier transformation for obtaining the amplitude-frequency characteristics (AFC) of FPM signals, aiming to improve the accuracy of signal fitting and to address problems related to modeling the responses of complex systems.

Materials and methods. The proposed transformation is applied directly to FPM signals and, due to its strictly periodic structure, enables the accurate determination of their AFC. The method was tested on gravimetric data acquired using the GNU-KB and CG-6 gravimeters. These data represent detrended temporal fluctuations of the gravity field, which are typically difficult to describe and interpret using conventional methods.

Results. It has been demonstrated that the proposed transformation effectively addresses the problem of determining the AFC of FPM signals, including those embedded within the transformation itself. The results show a high degree of fitting accuracy, thereby offering new opportunities for analyzing the responses of complex systems without the need for detailed physical modeling.

Conclusion. The modified Fourier transformation may serve as a valuable tool for constructing fitting functions in the form of AFCs when studying complex systems. In gravimetry, this approach opens new prospects for both fundamental research and the solution of applied geological and geophysical problems.

About the Authors

R. R. Nigmatullin
A.N. Tupolev Kazan National Research Technical University (KNRTU-KAI)
Russian Federation

Raoul R. Nigmatullin — Dr. Sci. (Phys.-Math.), Professor

10, K. Marx str., Kazan, 420111


Competing Interests:

the authors declare no conflict of interest



A. P. Belov
Sergo Ordzhonikidze Russian State University for Geological Prospecting
Russian Federation

Alexey P. Belov — Cand. Sci. (Geol.-Mineral.), Assoc. Prof.

23, Miklukho-Maklaya str., Moscow 117997

tel.: +7 (495) 255-15-10, ext. 21-52


Competing Interests:

the authors declare no conflict of interest



A. M. Erokhin
Petroviser LLC
Russian Federation

Alexandr M. Erokhin — Deputy Head of the IT Department for Research and Development

4, bld. 2, Makarova str., Tver, 170002

tel.: + 7 (915) 724-82-76


Competing Interests:

the authors declare no conflict of interest



A. V. Petrov
Sergo Ordzhonikidze Russian State University for Geological Prospecting
Russian Federation

Alexey V. Petrov — Dr. Sci. (Phys. and Math.), Prof., Faculty of Geology and Geophysics of Oil and Gas

23, Miklukho-Maklaya str., Moscow 117997

tel.: +7 (916) 604-55-01


Competing Interests:

the authors declare no conflict of interest



References

1. Lobanov A.M., Belov A.P., Erokhin A.M., Venediktov K.V. An Algorithm for Video File Recognition for Digitizing Oscillations of an Analog Indicator Using the GNU-KB Quartz Gravimeter as an Example. Izvestiya Vysshikh Uchebnykh Zavedeniy. Geologiya i Razvedka. 2024. No. 66(1). P. 128—134 (In Russ.). DOI: 10.32454/0016-7762-2024-66-1-128-134

2. Nigmatullin R.R., Belov A.P., Erokhin A.M., Mukhamet-zyanov A.R., Koneshov V.N., Drobyshev M.N. Construction and Analysis of Some Mathematical Models Related to Temporal Variations in the Gravity Field. Izvestiya Vysshikh Uchebnykh Zavedeniy. Geologiya i Razvedka. 2025. No. 67(2). P. 76—94 (In Russ.).

3. Torge W. Gravimetry. Translated from English by G.A. Shanurov; edited by A.P. Yuzefovich. Moscow: Mir Publ., 1999. 428 p. (In Russ.).

4. Almeida L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 1994. No. 42. P. 3084—3091.

5. Arecchi F., Meucci R., Puccioni G., Tredicce J. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 1982. No. 49. P. 1217—1220.

6. Bhattacharyya A., Singh L., Pachori R.B. Fourier– Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digit. Signal Process. 2018. No. 78. P. 185—196.

7. Chaudhary P.K., Gupta V., Pachori R.B. Fourier-Bessel representation for signal processing: A review. Digit. Signal Process. 2023. No. 135. P. 103938.

8. Chen J., Chau K., Chan C., Jiang Q. Subharmonics and chaos in switched reluctance motor drives. IEEE Trans. Energy Convers. 2002. No. 17. P. 73—78.

9. Cohen L. Time-Frequency Analysis; Prentice Hall Press: NJ, USA, 1995. Vol. 778.

10. De Souza U.B., Escola J.P.L., da Cunha Brito L. A sur­vey on Hilbert-Huang transform: Evolution, challenges and solutions. Digit. Signal Process. 2022. No. 120. P. 103292.

11. Hlubina P., Luňáček J., Ciprian D., Chlebus R. Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals. Opt. Commun. 2008. No. 281. P. 2349—2354.

12. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.C., Tung C.C., Liu H.H. The empir­ical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series ana­lysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998. No. 454. P. 903—995.

13. Kemao Q. Windowed Fourier transform for fringe pattern analysis. Appl. Opt. 2004. No. 43. P. 2695— 2702.

14. Kumar A. Wavelet signal processing: A review for recent applications. Int. J. Eng. Tech. 2020. No. 6. P. 12.

15. Li M., Liu Y., Zhi S., Wang T., Chu F. Short-time Fourier transform using odd symmetric window function. J. Dyn. Monit. Diagn. 2022. No. 1. P. 37—45.

16. Lauterborn W., Cramer E. Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett. 1981. No. 47. P. 1445.

17. Mallat S. A Wavelet Tour of Signal Processing, 3rd ed.; Academic Press: Burlington, MA, USA, 1999.

18. Mertins, A. Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications. Wiley: Chichester, UK, 1999.

19. Nigmatullin R.R., Alexandrov V., Agarwal P., Shilpi J., Necati O. Description of Multi-Periodic Signals Generated By Complex Systems: NOCFASS — New Possibilities of the Fourier Analysis. Numerical Algebra, Control and Optimization. March 2024. Vol. 14. No. 1. P. 1—19. DOI: 10.3934/naco.2022008

20. Peng Z.K., Peter W.T., Chu F.L. A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process. 2005. No. 19. P. 974—988.

21. Portnoff M. Time-frequency representation of digital signals and systems based on short-time Fourier analysis. IEEE Trans. Acoust. Speech Signal Process. 1980. No. 28. P. 55—69.

22. Qian S., Chen D. Discrete Gabor transform. IEEE Trans. Signal Process. 1993. No. 41. P. 2429—2438.

23. Qian S., Chen, D. Joint time-frequency analysis. IEEE Signal Process. Mag. 1999. No. 16. P. 52—67.

24. Sejdić E., Djurović I., Stanković L. Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Process. 2011. No. 91. P. 1351—1369.

25. Su X., Tao R., Kang X. Analysis and comparison of dis­crete fractional Fourier transforms. Signal Process. 2019 No. 160. P. 284—298.

26. Wilden I., Herzel H., Peters G., Tembrock G. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 1998. No. 9. P. 171—196.

27. Wu Z., Huang N.E. Ensemble empirical mode decom­position: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009. No. 1. P. 1—41.

28. Yan R., Gao R.X., Chen X. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process. 2014. No. 96. P. 1—15.

29. Yao J., Krolak P., Steele C. The generalized Gabor transform. IEEE Trans. Image Process. 1995. No. 4. P. 978—988.

30. Zayed A.I. Hilbert transform associated with the frac­tional Fourier transform. IEEE Signal Process. Lett. 1998. No. 5. P. 206—208.

31. Zhao Z., Tao R., Li G., Wang, Y. Clustered fractional Gabor transform. Signal Process. 2020. No. 166. P. 107240.


Review

For citations:


Nigmatullin R.R., Belov A.P., Erokhin A.M., Petrov A.V. Application of a modified fou rier transformation for modeling variations in the gravity field. Proceedings of higher educational establishments. Geology and Exploration. 2025;67(4):87-101. (In Russ.) https://doi.org/10.32454/0016-7762-2025-67-4-87-101

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-7762 (Print)
ISSN 2618-8708 (Online)