геология и разведка
Preview

Proceedings of higher educational establishments. Geology and Exploration

Advanced search

Changes in the generic diversity of brachiopods at the intervals of the largest Phanerozoic mass extinctions

https://doi.org/10.32454/0016-7762-2025-67-2-100-110

EDN: PRQRPN

Abstract

Background. Brachiopods evolved throughout the Phanerozoic, and their study contributes to the knowledge of the largest biotic crises. Accumulation and revision of paleontological information require regular re-evaluation of the influence of these crises on the taxonomic diversity of the given group of marine organisms.

Aim. To study the dynamics of the generic diversity of brachiopods under the influence of the most famous mass extinctions of the Phanerozoic based on three datasets representing different “generations” of paleontological compilations.

Materials and methods. On the basis of each dataset, a curve of generic diversity of brachiopods is constructed. Three curves are drawn against the uniform geological time scale. For the periods of mass extinctions considered, a decrease in the number of genera and relations to the preceding and forthcoming trends of diversity changes are estimated.

Results. The constructed curves indicate that the end-Ordovician, Permian/Triassic, Triassic/Jurassic, and Cretaceous/Paleogene mass extinctions triggered a decrease in the generic diversity of brachiopods. The largest was the influence of the Permian/Triassic catastrophe. Conversely, the effect of the Frasnian–Famennian (Late Devonian) event was either minimal or absent. The trends of diversity changes before and after critical intervals showed a different dynamic.

Discussion. The retrospective analysis of the curves of brachiopod generic diversity showed that newer information may have indicated a higher or lower intensity of crises in different cases. Moreover, the changes of the “generations” of paleontological compilations did not contribute to an improved understanding of the dynamics of the considered genera. Therefore, the three curves should be used in combination, treating the difference between them as the degree of error.

Conclusion. The results obtained indicate the vulnerability of brachiopods to mass extinctions, although to a different extent. Moreover, some estimates remain uncertain, which substantiates further research into of the development of brachiopods during the critical intervals of the geological history.

About the Author

D. A. Ruban
Southern Federal University
Russian Federation

Dmitry A. Ruban — Ph. D. (University of Pretoria, South Africa), Cand. Sci. (Geol.-Min.), Docent, Assoc. Prof. at the Southern Federal University.

43, 23-ja Linija Street, Rostov-on-Don 344019

tel.: +7 (903) 463-43-44


Competing Interests:

None



References

1. Alekseev A.S. Typization of Phanerozoic events of mass extinctions of organisms массового вымирания организмов. Herald of the Moscow University. Series 4: Geology. 2000. No. 5. P. 6—14 (In Russian).

2. Afanas’eva G.A. Disversity and distribution of brachiopods of the order Chonetida in the Carboniferous. Paleontological Journal. 2022. No. 5. P. 19—28 (In Russian).

3. Barash M.S. Causes of the great mass extinction of marine organisms in the Late Devonian. Oceanology. 2016. No. 6. P. 946—958 (In Russian).

4. Grunt T.A. Taxonomy and the main directions of development of articulate brachiopods of the order Athyridida. Scientific Notes of the Kazan University. Natural Sciences. 2010. V. 152. Is. 4. P. 123—134 (In Russian).

5. Kochergin D.V., Granovskaya N.V. Signs of the catastrophic cosmic event at the boundary of Cretaceous and Paleogene deposits of the North-Western Caucasus. Grozny natural science bulletin. 2024. No. 1. P. 42—48 (In Russian).

6. Kuznetsov V.G., Zhuravleva L.M. Reef formation in the epochs of mass extinctions: boundary of Frasnian — Famennian and Devonian — Carboniferous. Reports of Academy of Sciences. 2018. No. 4. P. 410—413 (In Russian).

7. Algeo T.J., Shen J. Theory and classification of mass extinction causation. National Science Review. 2024. V. 11. P. nwad237.

8. Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science. 1980. V. 208. P. 1095—1108.

9. Baarli B.G., Huang B., Johnson M.E. The deep-water, high-diversity Edgewood-Cathay brachiopod Fauna and its Hirnantian counterpart. Palaeogeography, Palaeoclimatology, Palaeoecology 2024. V. 642. P. 112153.

10. Baeza-Carratalá J.F., García Joral F. The last representatives of the Superfamily Wellerelloidea (Brachiopoda, Rhynchonellida) in the westernmost Tethys (Iberian paleomargins) prior to their demise in the early Toarcian Mass Extinction Event. Journal of Paleontology. 2022. V. 96. P. 991—1023.

11. Bailey R. Mass extinctions and their causes. Geology Today. 2024. V. 40. P. 21—28.

12. Benton M.J., Twitchett R.J. How to kill (almost) all life: The end-Permian extinction event. Trends in Ecology and Evolution. 2003. V. 18. P. 358—365.

13. Bond A.D., Dickson A.J., Ruhl M., Bos R., van de Schootbrugge B. Globally limited but severe shallow-shelf euxinia during the end-Triassic extinction. Nature Geoscience. 2023. V. 16. P. 1181—1187.

14. Brisson S.K., Pier J.Q., Beard J.A., Fernandes A.M., Bush A.M. Niche conservatism and ecological change during the Late Devonian mass extinction. Proceedings of the Royal Society B: Biological Sciences. 2023. V. 290. P. 20222524.

15. Carlson S.J. The Evolution of Brachiopoda. Annual Review of Earth and Planetary Sciences. 2016. V. 44. P. 409—438.

16. Chen Z.-Q., Kaiho K., George A.D. Survival strategies of brachiopod faunas from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology. 2005. V. 224. P. 232—269.

17. Copper P. Evaluating the Frasnian-Famennian mass extinction: comparing brachiopod faunas. Acta Palaeontologica Polonica. 1998. V. 43. P. 137—154.

18. Curry G.B., Brunton C.H.C. Stratigraphic distribution of brachiopods. Treatise on Invertebrate Paleontology. Part H. Brachiopoda. Revised. Vol. 6. Boulder: GSA, 2007. P. 2901—3081.

19. Darroch S.A.F., Wagner P.J. Response of beta diversity to pulses of Ordovician-Silurian mass extinction. Ecology. 2015. V. 96. P. 532—549.

20. De Vleeschouwer D., Da Silva A.-C., Sinnesael M., Chen D., Day J.E., Whalen M.T., Guo Z., Claeys P. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nature Communications. 2017. V. 8. P. 2268.

21. Deng S., Lu Y., Xu D. Progress and review of the studies on the end-Triassic mass extinction event. Science in China, Series D: Earth Sciences. 2005. V. 48. P. 2049—2060.

22. Eldredge N. Revisiting Clarence King’s “Catastrophism and Evolution” (1877). Biological Theory. 2019. V. 14. P. 247—253.

23. Finnegan S., Rasmussen C.M.Ø., Harper D.A.T. Identifying the most surprising victims of mass extinction events: An example using Late Ordovician brachiopods. Biology Letters. 2017. V. 13. P. 20170400.

24. Gradstein F.M., Ogg J.G., Schmitz M., Ogg G. (Editors). Geologic Time Scale 2020. Amsterdam: Elsevier, 2020. 1390 p.

25. Grasby S.E., Ardakani O.H., Liu X., Bond D.P.G., Wignall P.B., Strachan L.J. Marine snowstorm during the Permian-Triassic mass extinction. Geology. 2024. V. 52. P. 120—124.

26. Harper D.A.T. Late Ordovician Mass Extinction: Earth, fire and ice. National Science Review. 2024. V. 11. P. nwad319.

27. Harper D.A.T., Drachen A. The Orthida: The rise and fall of a great Palaeozoic brachiopod clade. Special Papers in Palaeontology. 2010. V. 84. P. 107—117.

28. He W.-H., Shi G.R., Twitchett R.J., Zhang Y., Song H.-J., Yue M.-L., Wu S.-B., Wu H.-T., Yang T.-L., Xiao Y.-F. Late Permian marine ecosystem collapse began in deeper waters: Evidence from brachiopod diversity and body size changes. Geobiology. 2015. V. 13. P. 123—138.

29. House M.R. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology. 2002. V. 181. P. 5—25.

30. Huang B., Rong J., Cocks L.R.M. Global palaeobiogeographical patterns in brachiopods from survival to recovery after the end-Ordovician mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology. 2012. V. 317—318. P. 196—205.

31. Jablonski D., Raup D.M. Selectivity of end-Cretaceous marine bivalve extinctions. Science. 1995. V. 268. P. 389—391.

32. Jain S. Fundamentals of Invertebrate Palaeontology. Macrofossils. New Delhi: Springer, 2016. 405 p.

33. Johansen M.B. Background extinction and mass extinction of the brachiopods from the chalk of northwest Europe. Palaios. 1989. V. 4. P. 243—250.

34. Jones R.W. Applied Palaeontology. Cambridge: Cambridge University Press, 2012. 434 p.

35. Kaiho K. Relationship between extinction magnitude and climate change during major marine and terrestrial animal crises. Biogeosciences. 2022. V. 19. P. 3369—3380.

36. Liang Y., Strotz L.C., Topper T.P., Holmer E.L., Budd G.E., Chen Y., Fang R., Hu Y., Zhang Z. Evolutionary contingency in lingulid brachiopods across mass extinctions. Current Biology. 2023. V. 33. P. 1565—1572.

37. Lowery C.M., Bralower T.J., Owens J.D., Rodriguez-Tovar F.J., Jones H., Smit J., Whalen M.T., Claeys P., Farley K., Gulick S.P.S., Morgan J.V., Green S., Chenot E., Christeson G.L., Cockell C.S., Coolen M.J.L., Ferriere L., Gebhardt C., Goto K., Kring D.A., Lofi J., Ocampo-Torres R., Perez-Cruz L., Pickersgill A.E., Poelchau M.H., Rae A.S.P., Rasmussen C., Rebolledo-Vieyra M., Riller U., Sato H., Tikoo S.M., Tomioka N., Urrutia-Fucugauchi J., Vellekoop J., Wittman A., Xiao L., Yamaguchi K.E., Zylberman W. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature. 2018. V. 558. P. 288—291.

38. Macleod N., Rawson P.F., Forey P.L., Banner F.T., Boudagher-Fadel M.K., Bown P.R., Burnett J.A., Chambers P., Culver S., Evans S.E., Jeffry C., Kaminski M.A., Lord A.R., Milner A.C., Milner A.R., Morris N., Owen E., Rosen B.R., Smith A.B., Taylor P.D., Urquhart E., Young J.R. The Cretaceous-Tertiary biotic transition. Journal of the Geological Society. 1997. V. 154. P. 265—292.

39. McGhee G.R., Clapham M.E., Sheehan P.M., Bottjer D.J., Droser M.L. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology. 2013. V. 370. P. 260—270.

40. Padian K. Measuring and comparing extinction events: Reconsidering diversity crises and concepts. Integrative and Comparative Biology. 2018. V. 58. P. 1191—1203.

41. Pálfy J., Mortensen J.K., Carter E.S., Smith P.L., Friedman R.M., Tipper H.W. Timing the end-Triassic mass extinction: First on land, then in the sea?. Geology. 2000. V. 28. P. 39—42.

42. Paleobiology Database, 2024. URL: https://paleobiodb.org/ (Accessed: 24.04.2024).

43. Payne J.L., Clapham M.E. End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century?.. Annual Review of Earth and Planetary Sciences. 2012. V. 40. P. 89—111.

44. Penny A., Kröger B. Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity. Nature Ecology and Evolution. 2019. V. 3. P. 1655—1660.

45. Peters S.E., Zhang C., Livny M., Ré C. A machine reading system for assembling synthetic paleontological databases. PLoS ONE. 2014. V. 9. P. e113523.

46. Posenato R. The end-Permian mass extinction (EPME) and the early triassic biotic recovery in the western Dolomites (Italy): state of the art. Bollettino della Societa Paleontologica Italiana. 2019. V. 58. P. 11—34.

47. Powell M.G. Timing and selectivity of the Late Mississippian mass extinction of brachiopod genera from the Central Appalachian Basin. Palaios. 2008. V. 23. P. 525—534.

48. Qiao L., Qie W. Palaeobiogeographic dynamics of brachiopod faunas during the Frasnian-Famennian biotic crisis in South China. Palaeobiodiversity and Palaeoenvironments. 2019. V. 99. P. 91—99.

49. Racki G. A volcanic scenario for the Frasnian– Famennian major biotic crisis and other Late Devonian global changes: More answers than questions? Global and Planetary Change. 2020. V. 189. P. 103174.

50. Rampino M.R., Caldeira K., Rodriguez S. Sixteen mass extinctions of the past 541 My correlated with 15 pulses of Large Igneous Province (LIP) volcanism and the 4 largest extraterrestrial impacts. Global and Planetary Change. 2024. V. 234. P. 104369.

51. Raup D.M., Sepkoski J.J. Mass extinctions in the marine fossil record. Science. 1982. V. 215. P. 1501—1503.

52. Rong J.-Y., Shen S.-Z. Comparative analysis of the end-Permian and end-Ordovician brachiopod mass extinctions and survivals in South China. Palaeogeography, Palaeoclimatology, Palaeoecology. 2002. V. 188. P. 25—38.

53. Rong J., Harper D.A.T., Huang B., Li R., Zhang X., Chen D. The latest Ordovician Hirnantian brachiopod faunas: New global insights. Earth-Science Reviews. 2020. V. 208. P. 103280.

54. Ruban D.A. A review of the Late Triassic conodont conundrum: survival beyond biotic perturbations. Palaeobiodiversity and Palaeoenvironments. 2022. V. 102. P. 373—382.

55. Sandberg C.A., Morrow J.R., Ziegler W. Late Devonian sea-level changes, catastrophic events, and mass extinctions. Special Paper of the Geological Society of America. 2002. V. 356. P. 473—487.

56. Schoepfer S.D., Shen J., Sano H., Algeo T.J. Onset of environmental disturbances in the Panthalassic Ocean over one million years prior to the Triassic-Jurassic boundary mass extinction. Earth-Science Reviews. 2002. V. 224. P. 103870.

57. Schrøder A.E., Surlyk F. Adaptive brachiopod morphologies in four key environments of the Late Cretaceous–Danian Chalk Sea of northern Europe: A comparative study. Cretaceous Research. 2020. V. 107. P. 104288.

58. Sepkoski J.J. A compendium of fossil marine animal genera. Bulletins of American Paleontology. 2002. V. 363. P. 1—560.

59. Serra F., Balseiro D., Monnet C., Randolfe E., Bignon A., Rustan J.J., Bault V., Munoz D.F., Vaccari N.E., Martinetto M., Crônier C., Waisfeld B.G. A dynamic and collaborative database for morphogeometric information of trilobites. Scientific Data. 2023. V. 10. P. 841.

60. Sheehan P.M. The late Ordovician mass-extinction. Annual Review of Earth and Planetary Sciences. 2001. V. 29. P. 331—364.

61. Shen S-Z., Shi G.R. Paleobiogeographical extinction patterns of Permian brachiopods in the Asianwestern Pacific region. Paleobiology. 2002. V. 28. P. 449—463.

62. Surlyk F., Johansen M.B. End-Cretaceous brachiopod extinctions in the Chalk of Denmark. Science. 1984. V. 223. P. 1177—1179.

63. Tomašových A., Siblík M. Evaluating compositional turnover of brachiopod communities during the end-Triassic mass extinction (Northern Calcareous Alps): Removal of dominant groups, recovery and community reassembly. Palaeogeography, Palaeoclimatology, Palaeoecology. 2007. V. 244. P. 170—200.

64. Vörös A., Kocsis Á.T., Pálfy J. Mass extinctions and clade extinctions in the history of brachiopods: Brief review and a post-Paleozoic case study. Rivista Italiana di Paleontologia e Stratigrafia. 2019. V. 125. P. 711—724.

65. Wang G., Zhan R., Percival I.G. The end-Ordovician mass extinction: A single-pulse event?. Earth-Science Reviews. 2019. V. 192. P. 15—33.

66. Wignall P.B., Atkinson J.W. A two-phase end-Triassic mass extinction. Earth-Science Reviews. 2020. V. 208. P. 103282.

67. Williams A., Hurst J.M. Brachiopod evolution. Developments in Palaeontology and Stratigraphy. 1977. V. 5. P. 79—121.

68. Zhang C., Ré C., Cafarella M., De Sa C., Ratner A., Shin J., Wang F., Wu S. DeepDive: Declarative knowledge base construction. Communications of the ACM. 2017. V. 60. P. 93—102.

69. Zhang Z., Augustin M., Payne J.L. Phanerozoic trends in brachiopod body size from synoptic data. Paleobiology. 2015. V. 41. P. 491—501.


Review

For citations:


Ruban D.A. Changes in the generic diversity of brachiopods at the intervals of the largest Phanerozoic mass extinctions. Proceedings of higher educational establishments. Geology and Exploration. 2025;67(2):100-110. (In Russ.) https://doi.org/10.32454/0016-7762-2025-67-2-100-110. EDN: PRQRPN

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-7762 (Print)
ISSN 2618-8708 (Online)