Analysis of machine learning approaches for the interpretation of acoustic fields obtained by well noise data modelling
https://doi.org/10.32454/0016-7762-2019-6-73-79
Abstract
About the Author
N. V. MutovkinRussian Federation
9, Institutskiy Per., Dolgoprudny, Moscow Region 141701
References
1. Ipatov A.I, Kremenetskiy M.I. Geofizicheskiy i gidrodinamicheskiy kontrol’ razrabotki mestorozhdeniy uglevodorodov. Moscow, NITs «Regulyarnaya i khaoticheskaya dinamika», 2006, 780 p. (In Russian)
2. Nikolaev S.A., Ovchinnikov M.N. Generatsiia zvuka filtratsionnym potokom v poristykh sredakh. Akusticheskii zhurnal, 1992, Vol. 38, no 1, pp. 114–118. (In Russian)
3. Krasnovidov E.Yu. Sozdanie metodiki akustiko-gidrodinamicheskikh issledovaniy poristykh sred i skvazhin. Diss. kand. tech. nauk. Moscow, 2005, 171 p. (In Russian)
4. DiCarlo D.A., Cidoncha J.I.G., Hickey C. Acoustic measurements of pore-scale displacements. Geophysical Research Letters, 2003, Vol. 30, no 17, P. HLS 2-1–2-5. DOI: 10.1029/ 2003GL017811.
5. Mikhailov D.N., Sergeev S.I. Investigation parameters for sound induced by fluid displacement in rock samples. Water Resources Research, 2019, Vol. 55, no 5, P. 4220–4232. DOI: 10.1029/2018WR024168.
6. Marfin E.A., Gaifutdinov R.R., Metelev I.S. Investigation of the Intensity of Acoustic Emission During Gas Filtration Through Porous Media. Geomodel, Gelendzhik, 2018, DOI: 10.3997/2214-4609.201802405. (In Russian)
7. Mutovkin N.V., Mikhailov D.N., Sofronov I.L. Modeling of acoustic fields excided by fluid flow in near-wellbore zone. Mathematical Models and Computer Simulations, 2019, Vol. 31, no 6. pp. 95–106. DOI: 10.1134/S0234087919060066.
8. Mutovkin N.V., Mikhailov D.N., Sofronov I.L. Analysis of Modeling of Acoustic Fields Excited by the Flow Noise in the Formation Inflow Zones. Geomodel, Gelendzhik, 2018. DOI: 10.3997/2214-4609.201802388. (In Russian).
9. Mutovkin N.V., Mikhailov D.N., Sofronov I.L. Estimation of fluid phase composition variation along the wellbore by analyzing passive acoustic logging data. SPE Russian Petroleum Technology Conference, Moscow, 2019. ID: SPE-196845-MS. 15 p.
10. Hastie T., Tibshirani R., Friedman J.H. The elements of statistical learning: data mining, inference, and prediction. Springer Series in Statistics, 2009, 745 p.
11. Bishop M. Pattern recognition and machine learning. SpringerVerlag New York, 2006, 738 p.
12. Plyushchenkov B.D. Turchaninov V.I. 2000. Acoustic Logging Modeling by Refined Biot’s Equations. Int. J. Mod. Phys. C., 2000, Vol. 11, no 2, pp. 365–397.
13. Pedregosa F., Varoquaux G., Gramfort A. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 2011, Vol. 12, pp. 2825–2830.
Review
For citations:
Mutovkin N.V. Analysis of machine learning approaches for the interpretation of acoustic fields obtained by well noise data modelling. Proceedings of higher educational establishments. Geology and Exploration. 2019;(6):73-79. (In Russ.) https://doi.org/10.32454/0016-7762-2019-6-73-79