геология и разведка
Preview

Proceedings of higher educational establishments. Geology and Exploration

Advanced search

Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3

https://doi.org/10.32454/0016-7762-2017-6-48-54

Abstract

On the 16th of April, 2016, a strong earthquake with M 7,3 occurred in the Kumamoto prefecture (Kyushu, Japan). This earthquake is the strongest in the last 30 years in this area. For a day before the main shock, two foreshocks with M 6,4 were registered. For seven days after the main shock, aftershocks activity spread to the north-east and south-west, most of the hypocentres of the aftershocks with M 6,4 were localized within the seismogenic layer in the depth interval from 5 to 10 km. The authors have modeled a stress-strain state (SSS) of the epicentral area be fore the earthquake and after it (after the formation of the main fault). For this purpose, a software package is used, that allows 2-D formulation (plane strain condition), for modeling SSS block heterogeneous geological environment, disrupted by a system of tectonic faults. The faults are modeled in the form of extended zones of the dispersed geomaterial, which elastic modulus are significantly lower than the elastic modulus of the environmental media. A structural-tectonic scheme of the Kumamoto earthquake area is used. An analysis of the results of SSS modeling has been done for the area 30x40 km before and after the earthquake. It is shown that the area and magnitude of the stress intensity in anomalous zones are the predictive signs of the location and intensity of a possible strong crustal earthquake, and the vector of the rapid decrease in the potential energy of deformation could be a guide for the most probable direction of tectonic rupture during a crustal earthquake. The results received can be useful in a deterministic approach to seismic hazard assessment and carrying out the geophysical observations focused on the forecast of the strong crustal earthquakes in the continental areas.

About the Authors

V. N. Morozov
Geophysical Center of RAS
Russian Federation


A. I. Manevich
Geophysical Center of RAS
Russian Federation


References

1. Забродин В.Ю., Рыбас О.В., Гильманова Г.З. Разломная тектоника материковой части Дальнего Востока России. Владивосток: Дальнаука, 2015. 126 с.

2. Колесников И.Ю., Морозов В.Н., Татаринов В.Н. (Св. о гос. рег. № 2011614290 «GEODYN 1.0») Программа для расчета напряженно-деформированного состояния в массиве горных пород на основе гетерогенного конечно-элементного моделирования.

3. Морозов В.Н., Колесников И.Ю., Белов С.В., Татаринов В.Н. Напряженно-деформированное состояние Нижнеканского массива - района возможного захоронения радиоактивных отходов // Геоэкология. 2008. № 3. С. 232-243.

4. Морозов В.Н., Колесников И.Ю., Татаринов В.Н. Моделирование уровней опасности напряженно-деформированного состояния в структурных блоках Нижнеканского гранитоидного массива (к выбору участков захоронения радиоактивных отходов) // Геоэкология. 2011. № 6. С. 524-542.

5. Морозов В.Н., Маневич А.И. Моделирование напряженно-деформированного состояния эпицентрального района землетрясения 26.01.2001 г., М = 6,9 (Индия) // Геофизические исследования. 2016. Том 17. № 4. С. 23-36, DOI: 10.21455/gr2016.4-2.

6. Aitaro K., Kouji N., Yohei H. The 2016 Kumamoto earthquake sequence // Proceedings of the Japan Academy, Ser. «B» (Physical and Biological Sciences). Vol. 92 (8). 2016. P. 358-371, DOI:10.2183/pjab.92.359.

7. Aitaro K., Jun’ichi F., Shigeki N., Kazushige O. Foreshock migration preceding the 2016 Mw 7.0 Kumamoto earthquake, Japan // Geophysical Research Letters. Vol. 43, Iss 17. P. 8945-8953, DOI:10.1002/2016GL070079

8. Kumamoto Earthquake Report 2 (April 17, 2016): Seismic activities and related information in central Kyushu since April 15, 2016 [Geological Survey of Japan]. https://www.gsj.jp/ hazards/earthquake/kumamoto2016/index.html (28.09.2017).

9. Morozov V.N., Kolesnikov I.Yu. and Tatarinov V.N. Modeling the Hazard Levels of Stress-Strain State in Structural Blocks in Nizhnekanskii Granitoid Massif for Selecting Nuclear Waste Disposal Sites // Water Resources. 2012. Vol. 39. Issue 7. P. 756-769.

10. Morozov V.N., Manevich A.I. Stress-strain state (SSS) of the epicentral area of the 1992 M = 6,8 Erzincan earthquake (Turkey) // Book of Abstracts of the International Conference “Data Intensive System Analysis for Geohazard Studies”, Sochi. 2016. P. 41, DOI:10.2205/2016BS08Sochi.

11. Okada Y. The 2016 Kumamoto earthquake (rapid report) // Earthquake. 2016. Vol. 61. P. 1-10.

12. Yagi Y., Okuwaki R., Okuwaki R., Kasahara A., Miyakawa A., Otsubo M. Rupture process of the 2016 Kumamoto earthquake in relation with the thermal structure around Aso volcano // Earth, Planets and Space. 2016. Vol. 68. Issue 1. P. 68-74. DOI:10.1186/s40623-016-0492-3.


Review

For citations:


Morozov V.N., Manevich A.I. Modeling of the stress-strain state in the earthquake epicenter area (Kumamoto Earthquake, Japan), 16.04.2016 M 7.3. Proceedings of higher educational establishments. Geology and Exploration. 2017;(6):48-54. (In Russ.) https://doi.org/10.32454/0016-7762-2017-6-48-54

Views: 450


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-7762 (Print)
ISSN 2618-8708 (Online)