геология и разведка
Preview

Proceedings of higher educational establishments. Geology and Exploration

Advanced search

Automation of the complex ecological monitoring of the territory of the airport using the method of machine learning

https://doi.org/10.32454/0016-7762-2017-4-72-78

Abstract

The main criteria of the airport territory pollution have been revealed during both studying of the data for the ecological conditions of the various airports of the world and carrying out a number of the field measurements. They have been: atmospheric air analysis, analysis of the ground, surface and waste water, measurements of the noise. The structure of such system, the sources of its data and the functionality have been described. The system of the environmental forecasts formation with machine learning elements has been presented. It includes stations of the automatic environmental monitoring, a subsystem of the information analysis and a subsystem of the processed information publication.

About the Authors

V. N. Ekzarian
Russian State Geological Prospecting University
Russian Federation


V. V. Rukavitsyn
Russian State Geological Prospecting University
Russian Federation


M. V. Zyulyaeva
Russian State Geological Prospecting University
Russian Federation


References

1. Бушмелева К.И., Плюснин И.И., Сысоев С.М., Бушмелев П.Е., Ельников А.В. Концепция автоматизации экологического мониторинга загрязнения окружающей среды на территории ханты-мансийского автономного округа // Современные наукоемкие технологии. 2007. № 3. С. 41-43.

2. Горшков М.В. Экологический мониторинг. М.: ТГЭУ, 2010. 313 с

3. Ененков В.Г. и др. Защита окружающей среды при авиатранспортных процессах. М. : Транспорт, 1984. 198 с.

4. Информационно-аналитическая система экологического мониторинга. [Электронный ресурс]. URL: http:// www.airsoft-bit.ru/programecologs/1Î5-eco-monitoring - дата обращения: 01.09.16.

5. Рукавицын В.В., Экзарьян В.Н. Методика оценки уровня устойчивости экосистем при помощи машинного обучения // Известия вузов. Геология и разведка. 2015. № 1. C. 38-42.

6. Airport environment monitoring [Электронный ресурс]. URL: https://www.bksv.com/en/products/environment-management/ airport-environment-monitoring - дата обращения: 01.09.16.

7. Aha D., Kibler D. Instance-based learning algorithms // Machine Learning. 1991. No. 6. P. 37-66.

8. Copenhagen Airports A/S Environmental Report [Электронный ресурс]. URL: https://www.cph.dk/contentassets/ fe47a2fb90bd4688a72aa2987119d645/miljo2001_uk.pdf - дата обращения: 01.09.16.

9. Madrid-Barajas Airport Environmental Management Report [Электронный ресурс]. URL:http://www.aena.es/csee/ccurl/ 54/66/barajas_M_A_WEB_ingok.pdf - дата обращения: 01.09.16.

10. Water Quality Monitored Continuously at Heathrow’s T5 [Электронный ресурс]. URL: https://www.ysi.com/File%20Library/ Documents/Application%20Notes/A535-Water-Quality-Monito red-Continuously-at-Heathrow-Airport.pdf - дата обращения: 01.09.16.


Review

For citations:


Ekzarian V.N., Rukavitsyn V.V., Zyulyaeva M.V. Automation of the complex ecological monitoring of the territory of the airport using the method of machine learning. Proceedings of higher educational establishments. Geology and Exploration. 2017;(4):72-78. (In Russ.) https://doi.org/10.32454/0016-7762-2017-4-72-78

Views: 657


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-7762 (Print)
ISSN 2618-8708 (Online)