геология и разведка
Preview

Proceedings of higher educational establishments. Geology and Exploration

Advanced search

Thermodynamic modeling of hydrothermal plumes forming processes in a submarine discharge zone

https://doi.org/10.32454/0016-7762-2017-1-50-54

Abstract

The main methods are considered and results of the modeling of the geochemical processes in submarine hydrothermal solutions of mid-ocean ridges discharge zones are analyzed. Initial materials for modeling were received at several sea expeditions, including operations at the Russian-French expedition SERPENTINE on RV «Pourquoi Pas?» (2007). For carrying out a computer thermodynamic modeling, hydro-geochemical and physicochemical models of a zone of hydrothermal discharge are created. Verification of model is carried out on the change of concentration of manganese in a hydrothermal plume. The prevailing forms of manganese migration in a plume are Mn2+, MnCl+, MnCl2. In a plume’s geochemical structure two zones are allocated: 1) high temperatures (350-100 °C), with the prevalence of the chloride complexes - buoyant plume; 2) low temperatures (100-2 °C), with the domination of a transfer in a form of free bivalent ion - lateral plume. The sulphate complex is observed in insignificant quantities (1,5 %) in a lateral plume, hydroxide - is stable at temperatures 325-125 °C and can be observed only in the buoyant plume. The results of the modeling almost completely correspond to the natural observations. A verification of the thermodynamic model testifies to her working capacity and allows to pass to the following stage of researches - to studying the geochemical dispersion nature of the main ore components in hydrothermal solutions - Fe, Cu, Zn, etc.

About the Authors

M. V. Zmievskii
1Saint-Petersburg Mining University
Russian Federation


S. M. Sudarikov
1Saint-Petersburg Mining University; FSBI VNIIOkeangeologia
Russian Federation


References

1. Богданов Ю.А. Гидротермальные рудопроявления рифтов Срединно-Атлантического хребта. М.: Научный мир, 1997. 167 с.

2. Гидротермальные сульфидные руды и металлоносные осадки океана / Ред. И.С. Грамберг. СПб.: Недра, 1992. 278 с.

3. Гричук Д.В. Термодинамические модели субмаринных гидротермальных систем. М.: Научный мир, 2000. 304 с.

4. Рона П. Гидротермальная минерализация областей спрединга в океане. М.: Мир, 1986. 159 с.

5. Судариков С.М. Гидроминеральные проявления в Океане // Геодинамика и рудогенез Мирового океана / Научн. ред. акад. И.С. Грамберг. СПб: ВНИИОкеангеология, 1999. C. 62-72.

6. Судариков С.М., Змиевский М.В. Геохимия рудообразующих гидротермальных флюидов мирового океана. Записки Горного института // Записки горного института. 2015. Т. 215. С. 5-15.

7. Судариков С.М., Змиевский М.В. Исследования форм миграции рудных элементов в гидротермальных растворах Срединно-Атлантического хребта // Известия высших учебных заведений. Геология и разведка. 2016. № 3. С. 31-35.

8. Судариков С.М., Каминский Д.В., Наркевский Е.В. Гидротермальные ореолы рассеяния в природных водах Срединно-Атлантического хребта. СПБ.: ФгУП «ВНИИокеангеология им. И.С. Грамберга», 2014. 161 с.

9. Судариков С.М., Кривицкая М.В. Формирование состава гидротермальных растворов в гидрогеологических массивах ультраосновных пород Срединно-Атлантического хребта // Записки горного института. 2011. Т. 189. C. 68-71.

10. Шваров Ю.В. О термодинамических моделях реальных растворов // Геохимия. 2007. № 6. С. 670-679.

11. Шваров Ю.В. HCh: новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows // Геохимия. 2008. № 8. С. 898-903.

12. Bischoff J.L., Rosenbauer R.J. Phase separation in seafloor geothermal systems by layered double-diffusive convection // J. Geol. 1989. V. 97. P. 613-623.

13. Bowers T.S., Von Damm K.L., Edmond J.M. Chemical evolution of mid-ocean ridge hot springs. Geochimica et Cosmochimica Acta. 1985. V. 49 (19/20). P. 2239-2252.

14. Charlou J.L., Donval J.P., Konn C., Birot D., Sudarikov S.M. High hydrogen and abiotic hydrocarbons from new ultramafic hydrothermal sites between 12° N and 15° N on the Mid-Atlantic Ridge. Results of the Serpentine cruise (March 2007) // AGU Fall Meeting.Earth and space science news. Eos. 2007. №. 88 (52). Abstract T51F-04. URL: http:// abstract-search.agu.org/meetings/2007/FM/T51F-04.htm.

15. Charlou J.L., Donval J.P., Konn C., Ondreas H., Fouquet Y. High Production and Fluxes of H2 and CH4 and Evidence of Abiotic Hydrocarbon Synthesis by Serpentinization in Ultramafic-Hosted Hydrothermal Systems on the Mid-Atlantic Ridge. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges // Geophysical Monograph Series 188. American Geophysical Union. 2010. P. 265-295.

16. Garrels R.M., Christ C.L. Solutions, Minerals and Equilibria. New York: Harper & Row, 1965. 368 p.

17. Mottl M.J. Metabasalts, axial hot springs and the structure of hydrothermal systems at mid-ocean ridges // Geol. Soc. Amer. Bull., 1983. V. 94. N 2: P. 161-180.

18. Sudarikov S.M., Roumiantsev A.B. Structure of hydrothermal plumes at the Logatchev vent field, 14°45’ N, Mid-Atlantic Ridge: evidence from geochemical and geophysical data // Journal of Volcanology and Geothermal Research. 2000. V. 101. P. 245-252.

19. Sudarikov S.M., Zhirnov E. Hydrothermal Plumes along the Mid-Atlantic Ridge: Preliminary Results of the CTD Investigations During the DIVERS Expedition. InterRidge News. Tokyo. 2001. № 10 (2). P. 33-36.

20. Von Damm, K. Seafloor hydrothermal activity: black smoker chemistry and chimneys // 1990. Annu. Rev. Earth Planet. Sci., V. 18. P. 173-204.


Review

For citations:


Zmievskii M.V., Sudarikov S.M. Thermodynamic modeling of hydrothermal plumes forming processes in a submarine discharge zone. Proceedings of higher educational establishments. Geology and Exploration. 2017;(1):50-54. (In Russ.) https://doi.org/10.32454/0016-7762-2017-1-50-54

Views: 430


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-7762 (Print)
ISSN 2618-8708 (Online)