геология и разведка
Preview

Proceedings of higher educational establishments. Geology and Exploration

Advanced search

Lizardite “kolskite” from the Lesnaya Varaka alkaline ultrabasic massif (Kola peninsula): new data

https://doi.org/10.32454/0016-7762-2024-66-2-101-111

Abstract

Background. A rare morphological variety of magnesian serpentine, described in 1939 in the veins of the Lesnaya Varaka alkaline ultrabasic massif (Kola Peninsula) under the name “kolskite” is studied. For a long time, this variety has been considered an antigorite.

Aim. Identification of the polymorphic modification of “worm-like” serpentine; determination of its crystal chemical features and possible genesis.

Materials and methods. Samples were studied using electron probe analysis and scanning electron microscopy by a Jeol JSM-IT500 scanning electron microscope equipped with an INCA X-Max energy dispersion spectrometer; powder X-ray diffraction; infrared spectroscopy using a FSM-1201 IR Fourier spectrometer; and Raman spectroscopy using a EnSpectr R532 spectrometer.

Results. Serpentine “kolskite” is represented by lizardite with the empirical formula (Mg2.79Al0.04Fe3+0.01)∑2.84[Si2.06O5](OH)4. The calculated parameters of the trigonal unit cell are as follows: a = 5.32(1) Å, c = 7.88(2) Å, V = 193.0(1) Å3. An increase in parameter c compared to that of apoolivine lizardite typical of ultrabasic objects indicates an expansion of the interlayer distance and is associated with serpentine hydration.

Conclusion. The formation of “worm-like” lizardite aggregates could occur either by replacing vermiculite under the action of low-temperature alkaline hydrothermal solutions, or as a result of hypergenic alteration in the earlier apoolivine serpentine.

About the Author

M. O. Bulakh
Lomonosov Moscow State University
Russian Federation

Maria O. Bulakh — Cand. Sci. (Geol.-Min.), junior researcher, Department of Mineralogy, Geological Faculty

1, Leninskie Gory, Moscow 119991



References

1. Belkova L.N. Antigorite of the Forest Varaki. / In Book: To mineralogy of postmagmatic processes. Leningrad, LSU Publishing House, 1959. P. 152—169 (In Russian).

2. Zinchuk N.N. Specific features of structure and composition of the weathering crust of kimberlite rocks // Bulletin of Perm University (Geology). 2016. No. 1. P. 60—76 (In Russian). https://doi.org/10.17072/psu.geol.30.60

3. Kukharenko A.A., Orlova M.P., Bulakh A.G., Bagdasarov E.A., Rimskaya-Korsakova O.M., Nefedov E.I., Ilyinsky G.A., Sergeev A.S., Abakumova N.B. Caledonian complex of ultramafic, alkaline rocks and carbonatites of the Kola Peninsula and North Karelia. Moscow: Nedra Publ., 1965. 772 p. (In Russian)

4. Balan E., Fritsch E., Radtke G., Paulatto L., Juillot F., Petit S. First-principles modeling of infrared spectrum of antigorite // European Journal of Mineralogy. 2021. Vol. 33. P. 389—400. https://doi.org/10.5194/ejm33-389-2021

5. Barale L., Capitani G., Castello P., Compagnoni R., Cossio R., Fiore G., Pastero L., Mellini M. Late metamorphic veins with dominant PS-15 polygonal serpentine in the Monte Avic ultramafite // European Journal of Mineralogy. 2023. Vol. 35. No. 3. P. 347— 360. https://doi.org/10.5194/ejm-35-347-2023

6. Baronnet A., Devouard B. Microstructures of common polygonal serpentine from axial HTREM imaging, electron diffraction, and lattice-simulation data // Canadian Mineralogist. 2005. Vol. 43. P. 513—542.

7. Chukanov N.V., Vigasina M.F. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. Springer International Publishing, 2020. 1376 p. https://doi.org/10.1007/978-3-030-26803-9

8. Compagnoni R., Cossio R., Mellini M. Raman anisotropy in serpentine minerals, with a caveat on identification // Journal of Raman Spectroscopy. 2021. Vol. 52. No. 7. P. 1—12. https://doi.org/10.1002/jrs.6128

9. Evans B.W. The serpentinite multisystem revisited: chrysotile is metastable // International Geology Review. 2004. Vol. 46. P. 479—506.

10. Faust G.T., Fahey J.J. The serpentine-group minerals. Washington: Geological Survey Professional Paper, 1964. 92 p.

11. Mellini M. The crystal structure of lisardite 1T: hydrogen bonds and politipism // American Mineralogist. 1982. Vol. 67. P. 587—598.

12. Mellini M. Structure and microstructure of serpentine minerals // Minerals at the Nanoscale / Eds. Nieto F., Livi K.J.T., Oberti R. European Mineralogical Union Notes in Mineralogy, 2013. Chap. 5. P. 1—27. https:// doi.org/10.1180/EMU-notes.14.5

13. Sakaguchi I., Kouketsu Y., Michibayashi K., Wallis S.R. Attenuated total reflection infrared (ATR–IR) spectroscopy of antigorite, chrysotile, and lizardite // Journal of Mineralogical and Petrological Sciences. 2020. Vol. 115. No. 4. P. 303—312. https://doi.org/10.2465/jmps.190807

14. Tarling M.T., Rooney J.S., Viti C., Smith S.A.F., Gordon K.C. Distinguishing the Raman spectrum of polygonal serpentine // Journal of Raman Spectroscopy. 2018. Vol. 49. No. 15. P. 1—7. https://doi.org/10.1002/jrs.5475

15. Tarling M.S., Demurtas M., Smith S.A.F., Rooney J.S., Negrini M., Viti C., Petriglieri J.R., Gordon K.C. Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy // European Journal of Mineralogy. 2022. Vol. 34. P. 285—300. https://doi.org/10.5194/ejm-34-285-2022.

16. Whittaker E.J.F., Zussman J. The characterization of serpentine minerals by X-ray diffraction // Mineralogical Magazine. 1956. Vol. 31. P. 107—126.


Review

For citations:


Bulakh M.O. Lizardite “kolskite” from the Lesnaya Varaka alkaline ultrabasic massif (Kola peninsula): new data. Proceedings of higher educational establishments. Geology and Exploration. 2024;66(2):101-111. (In Russ.) https://doi.org/10.32454/0016-7762-2024-66-2-101-111

Views: 276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-7762 (Print)
ISSN 2618-8708 (Online)