ОРИГИНАЛЬНАЯ НАУЧНАЯ CTATЬЯ / ORIGINAL ARTICLE удк 622.279

https://doi.org/10.32454/0016-7762-2025-67-3-97-104

EDN: NTFLWI

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАЗРАБОТКИ ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ ЗА СЧЕТ КОМПЛЕКСНОЙ ОПТИМИЗАЦИИ СХЕМЫ РАЗМЕЩЕНИЯ СКВАЖИН И ЭЛЕМЕНТОВ ГАЗОВОГО ПРОМЫСЛА

и.о. ходаков

000 «Газпромнефть НТЦ» 75—79д, наб. реки Мойки, г. Санкт-Петербург 190000, Россия

RNJATOHHA

Введение. Эффективное планирование разработки газовых и газоконденсатных месторождений требует комплексного подхода для достижения максимального экономического эффекта с соблюдением условий рационального использования запасов углеводородов месторождения, включающего не только определение технологических решений по разработке месторождения, включая количество скважин и систему разработки, но и оптимальное проектирование инфраструктуры.

Цель. Разработать методику оптимизации размещения эксплуатационных скважин, кустовых площадок, установок комплексной подготовки газа (УКПГ) и дожимных компрессорных станций (ДКС) с учетом технологических. экономических и географических ограничений.

Материалы и методы. Предложенный подход основан на математическом моделировании, включающем анализ плотности запасов в пласте для наиболее корректного размещения проектных скважин, учет затрат на строительство инфраструктуры и минимизацию затрат на транспортировку газа. Дополнительно рассматриваются ландшафтные ограничения, влияющие на размещение объектов инфраструктуры.

Результаты. В результате разработана методика, позволяющая максимизировать вовлекаемые в разработку запасы УВ, минимизировать капитальные затраты на строительство инфраструктуры и эксплуатационные расходы, что является ключевым фактором при проектировании месторождений.

Заключение. Разработанная методика и ее программная реализация могут быть использованы при проектировании новых газоконденсатных месторождений, а также для оптимизации схем разработки действующих объектов.

Ключевые слова: оптимизация газового промысла, интегрированное моделирование, сеть сбора и транспорта, минимизация затрат, газовый промысел, оптимизация количества скважин, оптимизация размещения скважин, оптимизация размещения кустов

Конфликт интересов: автор заявляет об отсутствии конфликта интересов.

Финансирование: исследование не имело спонсорской поддержки.

Для цитирования: Ходаков И.О. Повышение эффективности разработки газоконденсатных месторождений за счет комплексной оптимизации схемы размещения скважин и элементов газового промысла. *Известия высших учебных заведений. Геология и разведка*. 2025;67(3):97—104. https://doi.org/10.32454/0016-7762-2025-67-3-97-104 EDN: NTFLWI

Статья поступила в редакцию 22.07.2025 Принята к публикации 23.07.2025 Опубликована 30.09.2025

GEOLOGICAL EXPLORATION TECHNIQUE

INCREASING THE DEVELOPMENT EFFICIENCY OF GAS CONDENSATE FIELDS BY OPRIMIZING WELL ARRANGEMENT PATTERNS AND GAS PRODUCTION ELEMENTS

ILYA O. KHODAKOV

Gazpromneft STC LLC 75—79D, Moika River Embankment, St. Petersburg 190000, Russia

ABSTRACT

Background. Effective planning of gas and gas-condensate fields requires an integrated approach, which could ensure maximal economic effects while observing the conditions for the rational use of hydrocarbon reserves of the field. This includes not only effective technological solutions for field development, such as the number of wells and development systems, but also the optimal design of the entire infrastructure.

Aim. To develop a methodology for optimizing the placement of production wells, well pads, and booster compressor stations (BCS) taking into account technological, economic, and geographical constraints.

Materials and methods. The proposed approach is based on mathematical modeling, including an analysis of the density of reserves in the reservoir for the most competent placement of design wells, accounting for the costs of infrastructure construction and minimizing the costs of gas transportation. Additionally, landscape constraints affecting the placement of infrastructure facilities are considered.

Results. The developed approach allows the amount of hydrocarbon reserves involved in development to be maximized and the capital costs for infrastructure construction and operating costs to be minimized, which constitutes the key task of gas field planning.

Conclusion. The developed methodology and its software implementation can be used in the design of new gas condensate fields, as well as for optimizing the development schemes of existing facilities.

Keywords: gas field optimization, integrated modeling, collection and transportation network, cost minimization, gas field, well number optimization, well placement optimization, cluster placement optimization

Conflict of interest: the authors declare no conflict of interest.

Financial disclosure: no financial support was provided for this study.

For citation: Khodakov I.O. Increasing the development efficiency of gas condensate fields by oprimizing well arrangement patterns and gas production elements. *Proceedings of higher educational establishments. Geology and Exploration.* 2025;67(3):97—104. https://doi.org/10.32454/0016-7762-2025-67-3-97-104 EDN: NTFLWI

Manuscript received 22 July 2025 Accepted 23 July 2025 Published 30 September 2025

Задачи оптимизации газового промысла на месторождениях природного газа

Разработка газовых и газоконденсатных месторождений требует существенных капитальных вложений в строительство скважин и наземную инфраструктуру газового промысла [6, 9, 12]. При этом затраты на создание наземной инфраструктуры не только не уступают, но и зачастую превышают затраты на строительство скважин.

В общем виде объекты инфраструктуры газового промысла обычно включают: внутрипромысловые трубопроводы, газосборные пункты, оборудование промысловой подготовки газа, компрессорные станции, а также вспомогательные сооружения, в числе которых можно указать хозяйственные объекты, механические мастерские, транспортную сеть, объекты водоснабжения и связи [11, 10]. Количество, характер и мощность промысловых

сооружений зависят от геолого-эксплуатационной характеристики месторождения. При кустовом размещения скважин существенные затраты связаны с сооружением кустовых оснований.

Для обеспечения как экономической, так и технологической эффективности процесса разработки месторождений природных газов требуется оптимизация газового промысла с комплексным подходом к проектированию технологических процессов разработки месторождений природных газов и инфраструктурных решений [8, 14, 15]. Это предполагает построение объектов инфраструктуры с учетом планируемых технологических решений по разработке месторождений, включая систему размещения скважин и технологические режимы их эксплуатации, климатические и ландшафтные условия, а также требования по экспорту продукции с месторождения. Данная задача представляется довольно сложной ввиду жесткой взаимосвязи принимаемых решений по наземной инфраструктуре и технологических решений непосредственно по размещению устьев и забоев скважин на площади месторождения. Решение указанной задачи может проводиться путем совместной (комплексной) оптимизации размещения объектов инфраструктуры и скважин на месторождении. При этом в качестве критерия оптимизации следует рассматривать экономические показатели эффективности разработки с обеспечением максимально возможной выработки запасов углеводородов (УВ).

Ранее другие авторы в своих работах уже проводили исследования оптимизации размещения скважин и обустройства сети сбора и транспорта.

Так, в своей работе по оптимизации размещения скважин на газовых и газоконденсатных скважинах [7, 15] авторы отметили, что важным критерием при выборе расположения скважин является проницаемость коллектора, а также параметры трещин.

В работах А.И. Ермолаева [3, 4] рассматривались вопросы расстановки и кустования скважин. Автор привел несколько математических моделей решения данной задачи.

Кроме того, данная работа является продолжением серии работ, связанных с оптимизацией газоконденсатных промыслов. В статье на тему оптимизации режимов работы скважин [13] авторы рассматривали возможные способы для выравнивания объемов дренирования и снижения темпов падения пластового давления с помощью корректного выставления режимов работы скважин.

Алгоритм оптимизации газового промысла

Для оптимизации газового промысла был разработан автоматизированный алгоритм [1], предусматривающий нахождение наиболее оптимального с технологической и экономической точек зрения расположения скважин, кустовых площадок для скважин, установок комплексной подготовки газа (УКПГ) и дожимной компрессорной станции (ДКС), а также других объектов промысла. Алгоритм направлен на минимизацию издержек строительства инфраструктуры рассматриваемого объекта (эксплуатационный объект, залежь, участок залежи и т.д.) при максимизации добычи газа с соблюдением заданных ограничений, включая географические и технологические условия

При построении алгоритма оптимизации газового промысла учитывались следующие физические и технологические ограничения:

Географические ограничения

• Заповедники и водоохраняемые зоны: запрещено размещение кустовых площадок и ДКС на территории заповедников; забои скважин при этом могут располагаться на территории заповедников.

Технологические ограничения

- Максимальный угол наклона ствола скважины от кустовой площадки (принят в данном случае не более 60° и может варьироваться).
- Максимальное количество скважин, которое может быть размещено на одной кустовой площадке (принято в данном случае равным 5 в качестве оптимального, но не является обязательным).
- Минимальное количество скважин на залежи (принято при демонстрации данного алгоритма равным 5 и может быть пересмотрено), значение в процессе расчета оптимального количества скважин может варьироваться в зависимости от объема залежи и затрат на бурение.

Экономические ограничения

- Минимизация суммарного расстояния от кустов до площадок с УКПГ и ДКС для снижения издержек на транспортировку газа.
- Минимизация затрат на строительство кустовых площадок.
 - Минимизация затрат на бурение скважин.

Алгоритм предполагает разбиение газонасыщенной площади пласта на ячейки различного размера в зависимости от конкретной задачи (значение вариативное, в данном конкретном случае приняты размером 500×500 м). Каждая ячейка имеет свои запасы газа, которые определяются по картам плотности запасов газа.

GEOLOGICAL EXPLORATION TECHNIQUE

В рассматриваемом ниже примере запасы по ячейкам сетки варьируются в диапазоне от 50 до 150 условных единиц¹.

Указанные условия были приняты в качестве примера для возможности тестирования предлагаемого алгоритма. Они могут варьироваться в различных диапазонах, не учитываться или могут добавляться новые ограничения в зависимости от конкретных условий реальной залежи

Этапы реализации алгоритма

Алгоритм состоит из нескольких этапов, на каждом из которых последовательно решаются отдельные задачу проектирования инфраструктуры.

1. Оптимизация количества скважин и их размещения

Выбор оптимального количества скважин является первоочередным этапом проектирования газового промысла. Чрезмерное увеличение количества скважин приводит к росту капитальных затрат на бурение, строительство инфраструктуры и эксплуатационные расходы, в то время как недостаточное количество скважин снижает эффективность разработки месторождения и приводит к низким коэффициентам извлечения углеводородов.

Оптимизация выполняется с учетом следующих факторов:

- экономической целесообразности баланс между затратами на строительство скважин и доходами от добычи;
- запасов газа в ячейках продуктивного пласта — размещение скважин в наиболее перспективных областях залежи;
- ограничений по плотности размещения скважин минимальное расстояние между скважинами для предотвращения взаимного влияния скважин и образования обширных зон пониженного давления

Для выбора наиболее оптимального количества скважин авторами предлагается следующий подход.

Метод оптимизации

Оптимизация количества скважин решается упрощенно как дискретная задача оптимального выбора, в которой целевая функция представляет собой максимизацию прибыли при варьировании количества скважин.

Целевая функция расчета количества скважин имеет следующий вид:

$$\max n_{\text{ckb}} \cdot \left(\sum_{i=1}^{n_{\text{ckb}}} \text{Ni} \cdot C_{\text{прод}} - C_{\text{бур}} \right), \quad (1)$$

где $n_{\text{скв}}$ — количество эксплуатационных скважин; Ni — запасы в области дренирования (ячейки) скважины i;

С_{прод} — стоимость реализации 1000 м³ газа; С_{бур} — стоимость бурения одной скважины. Дополнительно вводятся ограничения:

1. Минимальное расстояние между скважинами:

$$d(i, j) \ge d_{qu}, \forall i, j, i \ne j,$$

где d(i, j) — расстояние между центрами двух скважин; $d_{_{\mathrm{S^{\!4}}}}$ — размеры принятых в расчетах ячеек сетки.

2. Экономическое ограничение:

$$n_{\text{\tiny CKB}} \cdot C_{\text{\tiny Gyp}} \leq B_{\text{\tiny max}},$$

где B_{max} — капитальные вложения на бурение скважин.

- 3. Учет запасов в каждой ячейке. Скважины размещаются в ячейках с наибольшей плотностью запасов. Основными критериями выбора местоположения скважин являются:
- максимальная величина запасов газа выбираются ячейки с наибольшими запасами;
- обеспечение равномерной выработки запасов УВ скважины должны располагаться на достаточном расстоянии, чтобы избежать локального истощения пласта;
- минимальное расстояние между скважинами не менее одной принятой в расчетах ячейки (в данном случае 500 м), что снижает интерференцию.

Оптимизация размещения выполняется методом дискретного линейного программирования, где целевая функция формулируется как:

$$\max\left(\sum_{i=1}^{n_{CKB}} N_i \cdot w_i\right). \tag{2}$$

Учитываются следующие ограничения:

$$\sum w_i = n_{\text{CKB}}, w_i \in \{0,1\}, d(i,j) \ge 500 \text{ M},$$

где w_i — бинарная переменная, принимающая значение 1, если в ячейке размещена скважина.

В результате решения комплекса данных задач получаем оптимальное количество скважин и расположение их забоев для заданных условий и карты плотности запасов.

Необходимо понимать, что при эксплуатации скважин необходимо грамотно подходить

¹ Запасы представлены в условных единицах.

к определению режимов работы скважин для их более продуктивной эксплуатации [2, 5].

2. Оптимизация расположения кустов

Кустовое расположение скважин позволяет существенно снизить затраты на строительство инфраструктуры, поскольку несколько скважин могут быть объединены в одну кустовую площадку, снижая суммарную протяженность трубопроводов, затраты на строительство дорог, а также упрощают процесс замера продукции и осмотра скважин.

В представленном алгоритме следующим этапом является оптимизация расположения кустов на объекте (залежи, месторождении).

Решение данной задачи основано на следующих ограничениях, накладываемых на расположение кустов и их строительство:

- проверка технологического ограничения на угол наклона ствола скважины (≤60° в данном примере);
- проверка ограничения на максимальное количество скважин на кусте (≤5 в данном примере);
- минимизация расстояния от скважины до кустовой площадки:
- проверка отсутствия заповедников, рек, озер в данных ячейках.

Если для группы скважин невозможно объединение в один куст из-за угла наклона или ограничений по количеству скважин, считается, что скважина является единичной. Кусты, связанные только с одной скважиной, не создаются ввиду экономической нецелесообразности. Вопрос о целесообразности работы с данными удаленными скважинами должен решаться отдельно с учетом экономических расчетов.

В рамках решения задачи учитывается, что куст и забой скважины могут располагаться в пределах одной ячейки (в таком случае тип скважины вертикальный или наклонно-направленный).

На первом этапе решения текущей задачи производится кластеризация скважин на группы с учетом минимизации расстояний между ними. Для этого используется алгоритм K-means, где:

- количество кластеров (кустов) определяется как $n_{_{\mathrm{KYCT}}} = n_{_{\mathrm{CKB}}}$ / 5;
- центроидами кустов изначально являются скважины с наибольшими запасами.

После первичной итерации кустования скважины перераспределяются по кустам так, чтобы минимизировать расстояние до центроида. Проверяется, что в каждом кусте не более 5 скважин. Если в кусте остается только одна скважина, то куст удаляется, а скважина остается самостоятельной.

На следующей итерации происходит поиск новых оптимальных координат куста:

$$K^* = \min\left(\sum_{i=1}^{n_{CKB}} d(K, Wi)\right), \tag{3}$$

где K — координаты кустовой площадки; Wi — координаты скважины i;

d(K, Wi) — расстояние между кустом и скважиной. После определения положения кустов:

- 1. Проверяется соблюдение ограничений на угол наклона. Если угол превышает критические значения (в данном примере 60°), скважина исключается из куста или куст смещается.
- 2. Если куст попадает в природоохранные зоны (заповедник, водоем или иное), его местоположение корректируется с размещением в ближайшую доступную ячейку.

Предлагаемый автором подход позволяет рационально распределять кустовые площадки на месторождении, сокращая затраты на строительство и эксплуатацию инфраструктуры.

3. Оптимизация расположения площадок УКПГ и ДКС

Установки комплексной подготовки газа (УКРГ) и дожимные компрессорные станции (ДКС) являются важными объектами инфраструктуры газовых промыслов и предназначены для поддержания требуемого давления газа, а также обеспечения его транспортировки к пунктам подготовки или магистральным газопроводам.

При снижении пластового давления в процессе разработки месторождения давление на устье скважины становится недостаточным для самопроизвольного транспорта газа по трубопроводам. ДКС компенсирует это снижение, обеспечивая транспортировку газа в систему сбора и далее в магистральные газопроводы. За счет снижения забойного давления компримирование газа способствует повышению дебита скважин и увеличению объема извлекаемых запасов.

УКПГ и ДКС должны быть размещены таким образом, чтобы минимизировать суммарное расстояние до кустов и снизить затраты на транспортировку газа от кустовых площадок и компримирование газа. Оптимизация выполняется путем минимизации целевой функции:

$$\min\left(\sum_{i=1}^{n_{\text{KyCT}}} d(K_i, D)\right), \tag{4}$$

где K_i — координаты кустовой площадки i;

GEOLOGICAL EXPLORATION TECHNIQUE

D — координаты УКПГ и ДКС.

Решение данной задачи проводится методом градиентной оптимизации (L-BFGS-B) с учетом ограничений:

- запрет на размещение УКПГ и ДКС в заповедниках и водоемах;
- выбор ближайшего допустимого участка, если оптимальная точка попадает в запрещенную зону.

Пример реализации алгоритма

Разработанный алгоритм был использован для оптимизации размещения на площади залежи скважин с кустовым основаниями и элементов инфраструктуры при проектировании разработки месторождений природного газа при предварительном обосновании вариантов разработки эксплуатационных объектов. На рисунке 1 в качестве примера приведен фрагмент газовой залежи для одного из месторождений УВ

в Западной Сибири с оптимизированными схемами размещения скважин на картах плотности запасов газа в варианте с количеством скважин 41 ед. Данная схема размещения скважин в дальнейшем может использоваться при проведении расчетов показателей разработки и проведении их технико-экономической оценки уже с учетом не только распределения начальных запасов газа, но и фильтрационных процессов.

Заключение

В данной работе рассмотрены задачи оптимизации газового промысла при проектировании разработки месторождений природного газа, включая оптимизацию: количества эксплуатационных скважин и размещения их забоев, размещения кустовых площадок и определения оптимального расположения УКПГ и ДКС на газовом промысле. Разработана методика, позволяющая максимизировать вовлекаемые

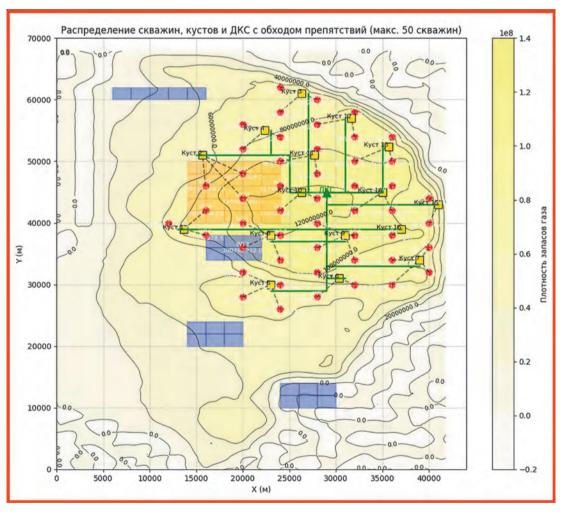


Рис. 1. Пример отработки алгоритма № 1 (количество скважин 41) Fig. 1. Example of working out algorithm No. 1 (the number of wells 41)

в разработку запасы УВ, минимизировать капитальные затраты на строительство инфраструктуры и эксплуатационные расходы, что является ключевым фактором при проектировании месторождений.

Методика, предложенная автором, выполнена в виде программного кода, обеспечивающего автоматизированный расчет оптимального расположения объектов инфраструктуры газового промысла. Разработанный алгоритм включает встроенные средства визуализации, позволяя наглядно представить результаты расчетов в виде картографического отображения размещения скважин, кустов и ДКС, а также распределения запасов газа и изолиний пластового давления.

Таким образом, разработанная методика и ее программная реализация могут быть использованы при проектировании новых месторождений, а также для оптимизации схем разработки действующих объектов.

Дальнейшее развитие работы будет направлено на учет динамических процессов в пласте, интеграцию более сложных фильтрационных моделей и оптимизацию данной методики для применения ее в интеграции с гидродинамической моделью месторождения. Такой подход поможет не только более корректно проводить оптимизацию, учитывая динамические потоки, но и способствовать решению задачи равномерной выработки запасов [9, 12].

ЛИТЕРАТУРА

- 1. Васильев Ю.Н. Автоматизированная система управления разработкой газовых месторождений. М.: Недра. 1987. 144 с.
- Ермолаев А.И., Трубачева И.А., Некрасов А.А. Алгоритм оптимизации дебитов газоконденсатных скважин. Наука и техника в газовой промышленности. 2019. № 3. С. 26—34.
- Ермолаев А.И., Кувичко А.М., Соловьев В.В. Модели и алгоритмы размещения кустовых площадок и распределения скважин по кустам при разработке нефтяных и газовых месторождений. Автоматизация, телемеханизация и связь в нефтяной промышленности. 2011. № 9. С. 29—32.
- Ермолаев А.И., Кувичко А.М., Латипов А.Р.
 Проектирование оптимальных схем размещения
 скважин на газовых залежах. Управление развитием крупномасштабных систем (MLSD'2021). 2021.
 С. 622—627.
- Ермолаев А.И., Трубачева И.А., Некрасов А.А. Распределение заданного суммарного отбора газа по скважинам газоконденсатной залежи по критерию минимума потерь пластовой энергии. Наука и техника в газовой промышленности. 2019. № 2. С. 57—68.
- 6. Закиров С.Н., Лапук Б.Б. Проектирование и разработка газовых месторождений. М.: «Недра», 1974. 376 с.
- Кааров Ж.З., Гаджиев М.Д. Разработка методов оптимизации размещения горизонтальных скважин в газовых и газоконденсатных залежах. Науки о Земле. 2020. № 5-3. С. 73—77.
- 8. Кабанов О.П., Касперович А.Г., Омельченко О.А., Рычков Д.А. Методология создания адекватной технологической модели газоконденсатного промысла на основе результатов комплексного моделирова-

- ния. Наука и техника в газовой промышленности. М.: ООО «ИРЦ Газпром», 2006. С. 30—36.
- Лапердин А.Н. Совершенствование разработки газовых месторождений севера Западной Сибири на основе системного анализа геолого-промысловой информации: дис. д-ра техн. наук: 25.00.17. М., 2006. 390 с.
- Маслов В.Н. Методология и технология управления разработкой крупных газовых месторождений севера Западной Сибири: дис. ... д-ра техн. наук: 25.00.17. Тюмень, 2007. 392 с.
- Никоненко И.С., Васильев Ю.Н. Газодобывающее предприятие как сложная система. М.: Недра, 1998. 343 с.
- Скоробогач М.А. Совершенствование методов управления системой добычи газа на основе рационального использования пластовой энергии: дис. ... канд. техн. наук: 25.00.17. М., 2012. 119 с.
- Ходаков И.О., Шандрыгин А.Н. К вопросу оптимизации технологических режимов скважин для повышения эффективности разработки газоконденсатных месторождений. Недропользование XXI. 2024. № 1(102). С. 58—63.
- 14. Guyaguler B. Optimization of well placement and assessment of uncertainty. Dissertation submitted to the department of petroleum engineering and the committee on graduate studies of Stanford university for the degree of doctor of philosophy. June 2002. P. 35—40.
- Ilsik Jang, Seeun Oh, Hyunjeong Kang, Juhwan Na. Multi-well placement optimisation using sequential artificial neural networks and multi-level grid system. Oil, Gas and Coal Technology. 2020. No. 4. P. 445— 465.

REFERENCES

- Vasiliev Yu.N. Automated control system for gas field development. Moscow: Nedra, 1987. 144 p. (In Russ.).
- Ermolaev A.I., Trubacheva I.A., Nekrasov A.A. Algorithm for optimizing gas condensate well flow rates. Science and Technology in the

GEOLOGICAL EXPLORATION TECHNIQUE

- Gas Industry. 2019. No. 3. Pp. 26-34. (In Russ.).
- Ermolaev A.I., Kuvichko A.M., Soloviev V.V. Models and algorithms for placing well pads and distributing wells among well pads during the development of oil and gas fields. Automation, telemechanization and communication in the oil industry. 2011. No. 9. Pp. 29-32 (In Russ.).
- Ermolaev A.I., Kuvichko A.M., Latipov A.R. Design of Optimal Well Placement Schemes in Gas Deposits. Management of Large-Scale Systems Development (MLSD'2021), 2021, pp. 622—627 (In Russ.).
- Ermolaev AI, Trubacheva IA, Nekrasov AA Distribution of a Given Total Gas Production by Wells of a Gas Condensate Deposit Based on the Criterion of Minimum Reservoir Energy Losses. Science and Technology in the Gas Industry. 2019. No. 2. pp. 57— 68 (In Russ.).
- Zakirov SN, Lapuk BB Design and Development of Gas Fields. Moscow: «Nedra», 1974. 376 p. (In Russ.).
- Kaarov Zh.Z., Gadzhiev MD Development of Methods for Optimizing the Placement of Horizontal Wells in Gas and Gas Condensate Deposits. Earth Sciences. 2020. No. 5-3. P. 73—77 (In Russ.).
- Kabanov O.P., Kasperovich A.G., Omelchenko O.A., Rychkov D.A. Methodology for creating an adequate technological model of gas condensate production based on the results of complex modeling. Science and technology in the gas industry. Moscow: 000 IRC Gazprom, 2006. P. 30—36 (In Russ.).

- Laperdin A.N. Improving the development of gas fields in the north of Western Siberia based on a system analysis of geological and field information: dis. Doctor of Engineering Sciences: 25.00.17. Moscow, 2006. 390 p. (In Russ.).
- 10. Maslov V.N. Methodology and technology for managing the development of large gas fields in the north of Western Siberia: dis. ... Doctor of Engineering Sciences. sciences: 25.00.17. Tyumen, 2007. 392 p. (In Russ.).
- 11. Nikonenko I.S., Vasiliev Yu.N. Gas production enterprise as a complex system. Moscow: Nedra, 1998. 343 p. (In Russ.).
- 12. Skorobogach M.A. Improving gas production system management methods based on rational use of reservoir energy: diss. Cand. sciences: 25.00.17. Moscow, 2012, 119 p.
- 13. Khodakov I.O., Shandrygin A.N. On the issue of optimizing well operating modes to improve the efficiency of gas condensate field development. Subsoil Use XXI. 2024. No. 1 (102). P. 58-63 (In Russ.).
- 14. Guyaguler B. Optimization of well placement and assessment of uncertainty. Dissertation submitted to the department of petroleum engineering and the committee on graduate studies of Stanford university for the degree of doctor of philosophy. June 2002. P. 35-40.
- Ilsik Jang, Seeun Oh, Hyunjeong Kang, Juhwan Na Multi-well placement optimization using sequential artificial neural networks and multi-level grid system. Oil, Gas and Coal Technology. 2020. No. 4. P. 445—465.

ВКЛАД ABTOPA / AUTHOR CONTRIBUTIONS

Ходаков И.О. — обучаясь в аспирантуре ООО «ВНИИгаз», разработал концепцию статьи, подготовил текст статьи, окончательно утвердил публикуемую версию статьи и согласен принять на себя ответственность за все аспекты работы.

Ilya O. Khodakov — studying in the graduate school of VNIIGaz, developed the concept of the article, prepared the text of the article, finally approved the published version of the article and agrees to take responsibility for all aspects of the work.

СВЕДЕНИЯ ОБ ABTOPE / INFORMATION ABOUT THE AUTHOR

ления центра компетенций по развитию интегрированного моделирования активов 000 «Газпромнефть НТЦ».

75—79д, наб. реки Мойки, г. Санкт-Петербург 190000, Россия

e-mail: Khodakov.IO@gazprom-neft.ru тел.: +7 (812) 448-24-01 (доб. 3366),

+7 (985) 486-06-70 SPIN-код: 1162-6676

Ходаков Илья Олегович — руководитель направ- Ilya O. Khodakov — Head of the Competence Center for the Development of Integrated Asset Modeling Gazpromneft STC LLC.

> 75-79D, Moika River Emb., St. Petersburg 190000, Russia

e-mail: Khodakov.IO@gazprom-neft.ru tel.: +7 (812) 448-24-01 (ext. 3366),

+7 (985) 486-06-70 SPIN-code: 1162-6676